lunes, 6 de octubre de 2008

Mejora de las propiedades nutritivas y organolépticas

El conocimiento del metabolismo de las plantas permite mejorar e introducir algunas características diferentes. En tomate, por ejemplo, se ha logrado mejorar la textura y la consistencia impidiendo el proceso de maduración, al incorporar un gen que inhibe la formación de pectinasa, enzima que se activa en el curso del envejecimiento del fruto y que produce una degradación de la pared celular y la pérdida de la consistencia del fruto.
En maíz se trabaja en aumentar el contenido en ácido oleico y en incrementar la producción del almidones específicos. En tabaco y soja, se ha conseguido aumentar el contenido en metionina, aminoácido esencial, mejorando así la calidad nutritiva de las especies. El gen transferido procede de una planta silvestre que es abundante en el Amazonas (Bertollatia excelsia) y que posee un alto contenido en éste y otros aminoácidos.

Otras aplicaciones

En el campo de la horticultura se han obtenido variedades coloreadas imposibles de obtener por cruzamiento o hibridación, como el el caso de la rosa de color azul a partir de un gen de petunia y que es el responsable de la síntesis de delfinidinas (pigmento responsable del color azul). En clavel también se ha conseguido insertar genes que colorean esta planta de color violeta.

También se ha conseguido mejorar la fijación de nitrógeno por parte de las bacterias fijadoras que viven en simbiosis con las leguminosas. Otra línea de trabajo es la transferencia a cereales de los genes de nitrificación de dichas bacterias, aunque es enormemente compleja al estar implicados muchísimos genes.

En colza y tabaco, se ha logrado obtener plantas androestériles gracias a la introducción de un gen quimérico compuesto por dos partes: una que sólo se expresa en el tejido de la antera que rodea los granos de polen y otra que codifica la síntesis de una enzima que destruye el ARN en las células de dicho tejido. Este procedimiento permitirá la obtención de híbridos comerciales con mayor facilidad.

En la industria auxiliar a la agricultura destaca la producción de plásticos biodegradables procedentes de plantas en las que se les ha introducido genes codificadores del poli-b-hidroxibutirato, una sal derivada del butírico. Cuando estos genes se expresan en plantas se sabe que de cada 100 gr de planta se puede obtener 1 gr. de plástico biodegradable.
Producción de plantas transgénicas productoras de vacunas, como tétanos, malaria en plantas de banana, lechuga, mango, etc.

Resistencia a estrés abióticos

Las bacterias Pseudomonas syringae y Erwinia herbicola, cuyos hábitat naturales son las plantas, son en gran parte responsables de los daños de las heladas y el frío en muchos vegetales, al facilitar la producción de cristales de hielo con una proteína que actúa como núcleo de cristalización. La separación del gen implicado permite obtener colonias de estas bacterias que, una vez inoculadas en grandes cantidades en la planta, le confieren una mayor resistencia a las bajas temperaturas.En cualquier caso, la resistencia a condiciones adversas como frío, heladas, salinidad, etc., es muy difícil de conseguir vía biotecnología, ya que la genética de la resistencia suele ser poligenética, interviniendo múltiples factores.

Resistencia a plagas y enfermedades

Gracias a la biotecnología ha sido posible obtener cultivos que se autoprotegen en base a la síntesis de proteínas u otras sustancias que tienen carácter insecticida. Este tipo de protección aporta una serie de ventajas muy importantes para el agricultor, consumidores y medio ambiente:
Reducción del consumo de insecticidas para el control de plagas.
Protección duradera y efectiva en las fases críticas del cultivo.
Ahorro de energía en los procesos de fabricación de insecticidas, así como disminución del empleo de envases difícilmente degradables. En consecuencia, hay estimaciones de que en EEUU gracias a esta tecnología hay un ahorro anual de 1 millón de litros de insecticidas (National Center for Food and Agricultural Policy), que además requerirían un importante consumo de recursos naturales para su fabricación, distribución y aplicación.


Se aumentan las poblaciones de insectos beneficiosos.

Se respetan las poblaciones de fauna terrestre. Este tipo de resistencia se basa en la transferencia a plantas de genes codificadores de las proteínas Bt de la bacteria Bacillus thuringiensis, presente en casi todos los suelos del mundo, que confieren resistencia a insectos, en particular contra lepidópteros, coleópteros y dípteros. Hay que señalar que las proteínas Bt no son tóxicas para los otros organismos. La actividad insecticida de esta bacteria se conoce desde hace más de treinta años. La Bt es una exotoxina que produce la destrucción del tracto digestivo de casi todos los insectos ensayados.Este gen formador de una toxina bacteriana con una intensa actividad contra insectos se ha incorporado a multitud de cultivos. Destacan variedades de algodón resistentes al gusano de la cápsula, variedades de patata resistentes al escarabajo y de maíz resistentes al taladro. Los genes Bt son sin duda los más importantes pero se han descubierto otros en otras especies, a veces con efectos muy limitados (en judías silvestres a un gorgojo) y otras con un espectro más amplio de acción como los encontrados en el caupí o en la judía contra el gorgojo común de la judía.Los casos más avanzados de plantas resistentes a enfermedades son los de resistencias a virus en tabaco, patata, tomate, pimiento, calabacín, soja, papaya, alfalfa y albaricoquero. Existen ensayos avanzados en campo para el control del virus del enrollado de la hoja de la patata, mosaicos de la soja, etc.

viernes, 3 de octubre de 2008

APLICACIONES DE LA BIOTECNOLOGÍA EN LA ACTUALIDAD

La biotecnología se aplica actualmente en sectores tan diversos como la Salud Animal y humana, Agroalimentación, Suministros industriales, Producción de energía y Protección del medio ambiente.

El desarrollo a la biotecnología aplicada a la sanidad humana ha sido el más rápido, tanto en l campo de la terapéutica, como en le diagnóstico de enfermedades. Desde que en 1978 se demostró que mediante la modificación genética de E. coli se puede obtener grandes cantidades de insulina humana, se han probado más de cincuenta fármacos o vacunas de origen recombinante y hay en fase avanzada de estudio o pendiente de su aprobación, más de un centenar de productos.

DEFINICIÓN DE BIOTECNOLOGÍA

"Toda aplicación tecnológica que utilice sistemas biológicos y organismos vivos o sus derivados para la creación o modificación de productos o procesos para usos específicos".

La biotecnología es la tecnología basada en la biología, especialmente usada en agricultura, farmacia, cienciadelos alimentos, ciencias forestales y medicina. Se desarrolla en un enfoque multidisciplinario que involucra varias disciplinas y ciencias como biología, bioquímica, genética, virología, agronomía, ingeriería, física, química, medicina y veterinaria entre otras. Tiene gran repercusión en la farmacia, la medicina, la microbiología, la ciencia de los alimentos, la minería y la agricultura entre otros campos. Probablemente el primero que usó este término fue el ingeniero húngaro Karl Ereki, en 1919, quien la introdujo en su libro biotecnología en la producción cárnica y láctea de una gran explotación agropecuaria.

martes, 30 de septiembre de 2008